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A Family of Generalized Jacobi Polynomials 

By F. Locher 

Dedicated to Professor Gunther Himmerlin on his sixtieth birthday 

Abstract. The family of orthogonal polynomials corresponding to a generalized Ja- 
cobi weight function was considered by Wheeler and Gautschi who derived recurrence 
relations, both for the related Chebyshev moments and for the associated orthogonal 
polynomials. We obtain an explicit representation of these polynomials, from which the 
recurrence relation can be derived. 

1. Introduction. The family of normalized orthogonal polynomials P1(.; A) 
corresponding to the weight function 

A) 3) f IxI2_+l(1 - x2)a(X2 - A2)$, A < lxi < 1, 

0, elsewhere, 

-y E R, a > -1, d > -1, 0 < A < 1, has been considered by Barkov [1], Gautschi 
[3] and in the special case -y = 0, a = = ? 1 by Wheeler [6]. This generalized 
Chebyshev case is of some interest in theoretical chemistry. Wheeler showed that 
the related Chebyshev moments of W(-112,-112O) (; A) as functions of A2 may be 
computed recursively. We pointed out that this recursion follows from the fact 
that these moments essentially are orthogonal polynomials up to a linear factor [4]. 
Wheeler and Gautschi were primarily interested in the recurrence relation of the 
orthogonal polynomials P.(.; A). This recursion formula was derived in case -Y = 0 
and for general Jacobi parameters a, f > -1; special attention was given to the 
Chebyshev case a = = ? 1 [3]. Our aim is to derive an explicit representation 
of the orthogonal polynomials in the Jacobi case -y = 0, a, f > -1 and in some 
other cases where -y is an even integer. Finally, we obtain the coefficients of the 
recurrence relation by using the known coefficients of the Jacobi recursion. These 
coefficients were derived implicitly by Gautschi [3] who gave recursions for them. 

2. Reduction to Jacobi-Like Form. In a first step we reduce some integrals 
with weight function w( , 5) to a generalized Jacobi form. We set 

2 (2 _1+A2 
1 - A2 \ 2/ 

or 
1 -A2 1 +A2 

x2=K(v+p), K:= 2 P:=1+A2 
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Then we get by substitution 

11 

f (x2) w(3') (x; A) dx = 2 f (X2)X2)+1 (1 - x2) (X2 _ A2))3 dx 
-1A 

(2.1) = Kl+O f f(K(v + p))(v + p)(l - v)(1 + v)13 dv 

1 

= Kc+1+,+1 f f(K(v + p))y(at13 )0 (v; p) dv, 

where ,( p ) denotes the weight function 

(2.2) ( Y) (a = f (1 - v) (1 + v)O (p + v)'Y, Ivj < 1, 
O, elsewhere, 

-j E R, a > -1, 6 > -l,p > 1. The case p < -1 may be solved by replacing v by 
-v and interchanging a and ,B. We see that the integrals (2.1) are of Jacobi type if 

-y = 0. They reduce to another special case if -y = s E Z. Then the weight function 
,u is the product of the Jacobi weight with a polynomial resp. a rational function 
with s-fold zero resp. pole at v = -p, p > 1. We will show that in these cases the 
orthogonal polynomials may be represented in terms of Jacobi polynomials. 

As the weight w( , 5) (x; A) is an even function of x, the associated orthogonal 

polynomials P&("'" )(x; A) of even and odd degree n are even and odd functions, 
respectively. So we have 

P2(a '13'5) (x; A) - ~(p(?13 ) (x2; A), PA13'5 (x; A) = x?b(a,13,5) (x2; A), 
2n n2n+1 k n 

with polynomials Pn and O/.n of exact degree n. (In the sequel we omit the param- 
eters a,f,, -y, A if possible.) 

In the even degree case, the orthonormality relation becomes, in view of (2.1), 

1 

Snm = f P2n (X)P2m (X)0("3 (x; A) dx 

-1~~~~~ 
(2.3) = f n (x2)Pm(X2)W(,,,3,j) (x; A) dx 

-1~~~~~ 

- Ka+fl+Y+2 f (n (K(v + p))Om (K(v + p))p(?t13.5) (v; p) dv. 

In the odd degree case we get similarly 

1~~~~~ 

6;nm = f P2n+1 (X)P2m+1 (X)w(a4'3~'.) (X; A) dx 

(2.4) = f ?n(2m(2x2(t5 x A) dx 

- K+:+3'+2 f 4'n(K(v + P4iPm(K(v + p))uf(('13'+l) (v; p) dv. 

Let in the usual notation of Jacobi polynomials [5] 

h(ad) =_ 2a+13+1 r(n + a + 1)r(n + / + 1) 
n * 2n+a+fl+1 n!r(n+ a+fl+ 1) 
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Then the orthonormality relations (2.3) and (2.4) are fulfilled in case -y = 0 if 

(2.5) Pn (K(v + p)) = [K+ +1h(a,)] -1/2p(a,) (v) 

and in case -y =-1 if 

(2.6) 'gOn (K(v + p)) = [K+O+ 1 h(a #) n 

If we replace K(v + p) by x2, there follows 

PROPOSITION 2. 1. In case -y = 0, the even-degree orthonormal polynomials 
have the form 

P(c'3'0') (X; A) 

(2.7) 2 [( 2 ) ')+2+ A2 

and in case -=-1, the odd-degree orthonormal polynomials have the form 

2n+ 1 (x;A) 

(2.8) - [(A2) &+f3+1 - P '11 (2 2i+2)2 

3. The Case -y = s, s EN. If the parameter -y is a natural number, the weight 
function ,( fl,y) has the special form 

p(c18) (v; p) = (1-v) (1 + v) (p + v)8, 

where p > 1, s E N, a, d > -1. Next to the Jacobi case -y = s = 0 we now consider 
the case s = 1; then other values of s E N can be treated by induction. 

According to an idea of Christoffel (cf. Szeg6 [5, p. 29 ff.]) we define the sequence 
of monic polynomials 

1~~~ i p(a) (0f) p(ci, ) (V) _p() (a) p (ci 0) (v) 
1+ 

where u:= -p, and in the usual notation 

(3.2) k(a$') = 2n + +# 

By direct inspection-numerator and denominator are both zero at v = a-or via 
the Christoffel-Darboux identity it is easy to see that pn$c' 1) is a monic polynomial 
of degree n. For every polynomial qn-i of degree less than n we get 

f p(&'3') (v; p)qn-i (V),(&fl) (v; p) dv 

-1 

(3.3) = k(a) | I n+ ) (v) - 

Pn'(u(o) n () } 
n+1- 

x qn-1(v)(1 - v) (1 + v)3dv 
=0 

because of the orthogonality of the Jacobi polynomials. Thus, P$'apfl) (v; p) is a 
constant multiple of the orthonormal polynomial relative to the weight ,u(afl 1). 
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The normalization can be done with the help of the Christoffel-Darboux identity 
(Szeg6 [5, p. 42 ff.]), from which it follows that 

h(a") n 
(3.4) (p, zJIl)(v.p) -- h$)pna ) () 

- Ip( 
)]Pa'i3) (or)P,a') (v). 

By writing one factor p$an'o3l) in the fractional form (3.1) and the other in the 
Christoffel-Darboux sum form (3.4), we get 

raAl / 
[pn(f3) (v; p)] (' 3 (v; p) dv 

n(p Enhaf)I VC 3 

-0) knct'A fP(a'I3) (ar)]2 Z[hvIP n+1 ' f 

(3.5) x / pV() (v)[Pn4" ') (r)Pn'+'1 (v) - Pn+1 (or)P' (v)] 

x (1 -v)(t(1 + v)1 dv 

- 3) p(a3P)( (-p) - k(a,i)) PO7 (p) 

n+ 1 n n n+1 

We thus have 

PROPOSITION 3.1. The polynomials 

1 P1V1POn (p)Ipn' (v) + PO (P)Pn (v) 
q nYo,1 (V; p) =n+ 

n+ W 

p~~~~~f+v 

h(ca hX1 *-(?a f) k ('d ) [ k (a3) ] - 1 Pn(3 ,) (p) P(d, (O') n *- n ~n+1 n n Pn+ 1 P) 

are orthonormal with respect to (1-v)?&(1+v)I3(p+v). An alternative representation 
is 

q$(al3 l) (v;p)- ( n kh < k(a+4)k[k$La [)]-l [h(a 3)] 1p(a,3)(_p)PV(a) (v). n P) 
ai 11 

n+1 n 
~ v=O 

From (2.4) it follows that the polynomials n for the odd-degree orthogonal 
polynomials have the representation 

(3.6) 4'($' a 0) (v) = [Ka+l+2] l/2qna,fl,l) (K-lv - p; p) 

Thus we get 

PROPOSITION 3.2. In case -y = 0 the odd-degree orthonormal polynomials have 
the form 

/ 1 -A2 y-(a+fi+2)/2 2 2 1+A2 1+A2 

P2n+i1x A- 2 ) q n 1 - A2 1 - A2' 1 - A2 

4. The Recurrence Relation. In case - = 0 we now derive the recursion 
formula for the even and odd degree polynomials, respectively. We start with a 
known result from the theory of orthogonal polynomials (Chihara [2, p. 25]). 
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LEMMA 4.1. If the system {P}-to 0 of monic polynomials can be generated by 
the recurrence relation 
(4.1) Po(x) = 1, P1 (x) = (x-flo)Po(x), 

Pn+ 1 (X) = (x-/3n)Pn (X) --YnPn-1 (X), n = 1,2, ... . 

then for a, b E R, a :A 0, the system {Qn}?n?=o of monic polynomials 

Qn(X) := anP(ax + b) 

can be generated by 

(4.2) Qo(x) = 1, Ql (x) = (x - A)Qo(x), 

Qn+1 (X) = (x-#n)Qn (X)--nQn - (x), n = 1,2, .., 
where 

fl' #f l-b n=01,2,.... 
(4.3) a 

"Yn 
=An n = 1, 2. 

From (2.5) there follows the representation of the monic even-degree polynomials 
W(a(,"30). 

(4.4) @naf'M') (V) = K [k(,,8)] 1Pn (Iv _ p- 

We are interested in the coefficients b2n, C2n of the recursion formula 

(4.5) 6($3'?) (v) = (v - b2n)(o4?") (V) - C2nS()a43,'0) (v). 

Now we use the recursion of the monic Jacobi polynomials (Chihara [2, p. 220]) 

(x) = (x -1(n a3) )Pn,c "3) (x) - I(nc) Pn'1 (x) 

4.)(ce'_) = f2 - a 

(4.6) -(2n +a +fl)(2n +a +fl+ 2)' 

-(a = 4n(n + a)(n + 6)(n + a +,6) 
(2n+a+/ l- 1)(2n+a++,8)2(2n+a+fl+ 1)' 

and take a = 1/K, b = -p, b/a = -(1 + A2)/2 in Lemma 4.1 to obtain 

1 + A2 
b2n= +,Kfd ce, 

2 P 
(4.7) 1 + A2 

- 2 if jai = 131, n =0,1, 2, .... 

C2n 2 
(-) a(nck 

(4.8) c21= >2 if a=fl=?, n= 1,2. 

To get the recursion formula for the monic odd-degree polynomials in case -y = 0 we 
start from Proposition 3.1 and use Lemma 4.1. (Alternatively, we could start with 
Proposition 3.2, but the following computation in two steps is easier.) We know 
that the monic polynomials 

-(or ii 1) Pn(C 
6 

(- P) p(eP) () - Pn (a -P)Pn (V) (4.9) n" '8'1)(v) := kn+) - n41( p pA ( 
k -al01k"0)(-o)(v+ D) 
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are orthogonal with respect to (1 - v)o(1 + v)8(v + p). The coefficients o,n, rn in 
the recursion formula 

q +'(v' ="( - (V) - -@/,n (4.10) Orns (v ='c (-)qXs(v-n-I' )v 

result from 

Pn+ P ( V (v) n+ n+1 (v) 

(4.11) = (v - n) Pf' (-P)Pn1( ) (v)-Pni (-p) Pn (v) 

Pn-1)) (. -PO)Pnn ) (v)-Pn ) (-P)PPg) (V) - p(&~~~~~~~~/3 ,f) -tn- ~~~~~Pn-1( (P) 

if we first multiply by p + v. Applying to the terms involving the factor v the 
recurrence formula (4.6) (with x = v) results in a vanishing linear combination of 
Jacobi polynomials. Equating the coefficients to zero then gives 

(4.12) (a= M(3l + n 2 
(P) _ p1) (_)Q 

(4.13) Tfn - pA( )(_p)]2 e 

As the monic odd-degree polynomial 4nsa/3O) has the representation (cf. (3.6)) 

(4.14) i7n (3O)(v) = K q$o's') (K-P 

the coefficients b2n+i, C2n+1 in the formula 

(4.15) fb`O'0)(v) = (v -b2n+1)4'(a$'0)(V) -C2n+1fn'NJ )(U 

can be derived from (4.12) and (4.13) using Lemma 4.1. Thus we get 

1 +A2 1 -A2 
(4.16) b2n+= 2 + 2 fOn7 

(4.17) = 2 (nA)2 

In the Chebyshev case a, /3= i- these formulas can be simplified. We set 

(4.18) f :=-P -; 

then the Chebyshev polynomial of the first kind can be represented in the form 

(4.19) Tn (-P) = 1 (,n + -n) 

and therefore 
(4.20) p7(-1'2,/2) (-p) _1 .n+2 + -n-2 

420) 
p(-1/2,-1/2) ) 2 .n+i + .-n-1 

As in this case 

1n+1 = 0 Yn+l=4 
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we get for a = = - 

1 +A2 1 -A22-2+ 2 
(4.21) b2 = 1 + 4 

2 4 ~ ~+1 + -n-)(o + e-n) 

(4.22) C2n+ = 

We note that in the limit A -+ 0, i.e., ' 1 or p -+ 1, these recursion coefficients 
agree with those of the polynomial P( l/2l/2) (2v - 1) up to a scaling. Analogous 
formulas can be derived in the other Chebyshev cases. 
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